Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

trans-Dichloridotetrakis(3,5-dimethylpyridine)copper(II)

Daniel P. Martone, Andrew W. Maverick and Frank R. Fronczek*

Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA
Correspondence e-mail: ffroncz@|su.edu

Received 20 March 2007
Accepted 13 April 2007
Online 11 May 2007
The title compound, $\left[\mathrm{CuCl}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}\right)_{4}\right]$, lies on a site of crystallographic $42\left(D_{4}\right)$ symmetry in the space group $P 4 / n n c$, and is isomorphous with the Ni and Co analogues. The Cu and Cl atoms thus lie on a fourfold axis, and the 3,5-lutidine ligands lie on twofold axes. The $\mathrm{Cu}-\mathrm{Cl}$ distance is 2.7649 (7) \AA and the $\mathrm{Cu}-\mathrm{N}$ distance is 2.0510 (12) \AA. The space group of the Co analogue is revised from Pnnn to P4/nnc.

Comment

The title compound, (I), was prepared during an investigation of the reactions of a cofacial binuclear bis(ketoenamine) complex, $\mathrm{Cu}_{2}(\mathrm{BBI})_{2}$, where BBI is 5 -tert-butyl-m-xylylenebis(acetylacetone iminate) (Bradbury et al., 1989), with 3,5lutidine and related Lewis bases. Electronic spectroscopic changes during these reactions suggested that simple adducts, such as $\mathrm{Cu}_{2}(\mathrm{BBI})_{2} L_{2}$, were forming. However, these products could not be isolated. Instead, the complex apparently decomposed, and the title compound fortuitously crystallized after many years. No chloride was added to the $\mathrm{Cu}_{2}(\mathrm{BBI})_{2}-$ 3,5-lutidine solution, nor were any other copper sources present. However, dichloromethane is known to be attacked by amines, with displacement of a Cl^{-}anion (Fronczek et al., 1990; Maverick et al., 1990). Thus, formation of the title compound may have occurred by slow hydrolysis of $\mathrm{Cu}_{2}(\mathrm{BBI})_{2}$ to release Cu^{2+}, and subsequent combination with displaced Cl^{-}anion and excess lutidine.

(I)

The molecule of (I) lies on a site of 42 symmetry and $Z^{\prime}=\frac{1}{8}$. Space group $P 4 / n n c$ is uncommon, with only three occurrences
reported by Brock \& Dunitz (1994) in their compilation of well determined structures from the Cambridge Structural Database (CSD; Allen, 2002). All three have $Z^{\prime}=\frac{1}{8}$. A search of the complete database (Version 5.28 of November 2006) yielded 101 hits, of which 65 have $Z^{\prime}=\frac{1}{8}, 34$ have $Z^{\prime}=\frac{1}{4}$, one has $Z^{\prime}=\frac{9}{8}$ and one has $Z^{\prime}=2$.

The crystallographic symmetry requires strict square-planar geometry of the CuN_{4} unit, and the axial octahedral elongation is likewise undistorted. The $\mathrm{Cu}-\mathrm{N}$ distance is comparable with those in trans-dichlorotetrakis(pyridine)copper(II) pyridine disolvate [2.028 (3)-2.064 (4) \AA; CSD refcode OMIROR; Bond et al., 2003], but that compound has a somewhat longer $\mathrm{Cu}-\mathrm{Cl}$ distance $[2.957$ (2) \AA] than in (I). Likewise, in trans-dichlorotetrakis(3-pyridylmethanol- κN)copper(II) (CSD refcode PACYUO; Moncol et al., 2004), the $\mathrm{Cu}-\mathrm{N}$ distances are comparable $[2.0322$ (15) -2.0747 (17) \AA] , and the $\mathrm{Cu}-\mathrm{Cl}$ distance is even longer [3.0752 (8) \AA].

There are differences among these three structures with respect to the twisting of the pyridine ring out of the coordination plane, as measured by the $\mathrm{Cl}-\mathrm{Cu}-\mathrm{N}-\mathrm{C}$ torsion angles. Compound (I) has a torsion angle of $42.35(6)^{\circ}$, OMIROR has torsion angles of 25.4 and 32.0°, while PACYUO has torsion angles within the range $10.1-32.8^{\circ}$.

Compound (I) is isomorphous with the analogous $\mathrm{Ni}^{\mathrm{II}}$ compound (Xu et al., 2005). The $\mathrm{Co}^{\mathrm{II}}$ analogue (refcode YIZSIJ; Kansikas et al., 1994) has been reported in the space group Pnnn, with $a=b$, the molecule lying on a site of $222\left(D_{2}\right)$ symmetry and having one full 3 ,5-lutidine ligand in the asymmetric unit. However, the coordinates of the lutidine conform to twofold symmetry, with a maximum deviation of $0.013 \AA$. Thus, it appears that the structure should be properly

Figure 1
The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Only the asymmetric unit is labelled.
described in the space group $P 4 / n n c$, isomorphous with the Ni and Cu compounds. Symmetrized coordinates for YIZSIJ in the tetragonal space group are provided as supplementary material.

Experimental

The title compound was prepared from a solution of $\mathrm{Cu}_{2}(\mathrm{BBI})_{2}$-DMF in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, where BBI is 5 -tert-butyl- m-xylylenebis(acetylacetone iminate), by addition of an excess of 3,5-lutidine (Bradbury et al., 1989). Over a period of $1-2$ weeks, the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ evaporated, and blue crystals formed in the residual liquid. However, those crystals were not of sufficient quality for crystal structure determination, and the sample was retained in a sealed vial. After approximately 18 years, high-quality blue prisms of (I) were discovered in the sample.

Crystal data

$\left[\mathrm{CuCl}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{~N}\right)_{4}\right]$
$M_{r}=563.05$
Tetragonal, $P 4 / n n c$
$a=11.3324(15) \AA$
$c=10.894(2) \AA$
$V=1399.0(4) \AA^{3}$

$$
Z=2
$$

Mo $K \alpha$ radiation
$\mu=1.00 \mathrm{~mm}^{-1}$
$T=110 \mathrm{~K}$
$0.20 \times 0.20 \times 0.17 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer with an Oxford Cryosystems Cryostream cooler
Absorption correction: multi-scan (SCALEPACK; Otwinowski \&
Minor, 1997)
$T_{\text {min }}=0.826, T_{\text {max }}=0.849$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
45 parameters
$w R\left(F^{2}\right)=0.081$
$S=1.06$
1547 reflections

For $\mathrm{Csp} p^{2}$ atoms, a C -H distance of $0.95 \AA$ was used, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$. For the methyl group, $\mathrm{C}-\mathrm{H}=0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}(\mathrm{C})$, and a torsional parameter was refined.

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO (Otwinowski \& Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The purchase of the diffractometer was made possible by grant No. LEQSF(1999-2000)-ENH-TR-13, administered by the Louisiana Board of Regents. This work was supported by the ACS Petroleum Research Fund.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GZ3084). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Bond, A. D., Doyle, E. L., Garcia, F., Kowenicki, R. A., McPartlin, M., Riera, L. \& Wright, D. S. (2003). Chem. Commun. pp. 2990-2991.

Bradbury, J. R., Hampton, J. L., Martone, D. P. \& Maverick, A. W. (1989). Inorg. Chem. 28, 2392-2399.
Brock, C. P. \& Dunitz, J. D. (1994). Chem. Mater. 6, 1118-1127.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Fronczek, F. R., Ivie, M. L. \& Maverick, A. W. (1990). Acta Cryst. C46, 20572062.

Kansikas, J., Leskela, M., Kenessey, G., Werner, P. E. \& Liptay, G. (1994). Acta Chem. Scand. 48, 951-959.
Maverick, A. W., Ivie, M. L. \& Fronczek, F. R. (1990). J. Coord. Chem. 21, 315322.

Moncol, J., Mudra, M., Lonnecke, P., Koman, M. \& Melnik, M. (2004). J. Chem. Crystallogr. 34, 423-431.
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Xu, X.-S., Lü, Y.-P., Deng, D.-S., Hu, M.-L. \& Jin, Z.-M. (2005). Acta Cryst. E61, m889-m891.

